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ABSTRACT

As a characterization of the variability of observed geopotential height fluctuations, their probability density
function (PDF) and its skewness are studied in the global domain for winter and summer. The PDF of the
geopotential, ®, is skewed toward low anomalies at midlatitudes and toward high anomalies in polar and tropical
regions. When @ is filtered spatially by discarding planetary wavenumbers less than ~8, the skewness is small
in the Tropics and in polar regions and large and negative in zonal bands approximately centered on the latitudes
of the climatological jets. Where the skewness is large and negative, the zonally averaged PDF of ® has an
approximately exponential tail for negative anomalies.

From a diagnostic study based on computing ® from the observed winds through the balance equation, the
negative skewness bands can clearly be attributed to the rectification of near-symmetric velocity fluctuations by
the advective nonlinearity. This mechanism implies that where winds are highly variable, large synoptic-scale
negative ® anomalies are more likely than large positive ® anomalies. The maximum of the (negative) zonally
averaged skewness in the summer hemisphere tends to be larger than that in the winter hemisphere, and in both
hemispheres these maxima lie ~150 mb below the velocity variance maxima. The fact that skewness extrema
do not precisely match maxima in the nonlinearities is attributed to asymmetries in the winds themselves.
Interactions of the velocity fluctuations with the mean flow have a small but observable effect in modulating the
skewness.

The subtle dependence of the skewness on key flow parameters is illustrated through an analytic model for
idealized fluctuations on a beta plane. General expressions for the PDF, its asymptotic form, criteria for the
presence of exponential tails, and the generic dependence of the skewness on a generalized Rossby number are
derived. For the case of a é-function velocity spectrum, closed-form expressions for the PDF and skewness are
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obtained and compared to observations.

1. Introduction

Atmospheric geopotential height fluctuations have a
pronounced asymmetry. Especially at midlatitudes,
large low anomalies (negative departures from the
mean) in a given range of magnitudes are much more
likely than high anomalies in the same range. This
asymmetry is a basic characteristic of the field’s vari-
ability that cannot be captured by an analysis of vari-
ance. A more complete characterization of the vari-
ability of geopotential, ®, is its probability density
function (PDF). Usually, however, there is insufficient
data to estimate the PDF reliably at a point. Hence, we
estimate what are essentially zonally averaged PDFs
and quantify the local asymmetry of the geopotential
height fluctuations by computing their skewness [the
third moment of the (local) PDF, nondimensionalized
by its variance]. Apart from its intrinsic interest as a
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basic characterization of the flow, a large skewness is
usually also a signature of an underlying nonlinearity.
White (1980) and, more recently, Nakamura and Wal-
lace (1991) have studied the patterns of the skewness
and kurtosis (nondimensionalized fourth moment of
the PDF) of Northern Hemisphere (NH) 1000- and
500-mb low-frequency geopotential height fluctua-
tions. These studies established a change of sign in
skewness across the storm tracks, with positive skew-
ness to the north and negative skewness to the south.
Nakamura and Wallace (1991) speculate, with some
empirical numerical evidence by Vautard et al. (1988),
that the skewness comes from cutoff lows at the lower
latitudes and from blocking anticyclones at high lati-
tudes. No theory is available, however, to identify
clearly the mechanism(s) that impart asymmetry to the
low-frequency anomaly distribution, although baro-
clinic waves are strongly suspected to play a role ( Nak-
amura and Wallace 1991; Vautard et al. 1988).

In this paper, we focus on both spatially filtered and
unfiltered global geopotential fluctuations. For the fil-
tered geopotential, @, , obtained by discarding scales
with planetary wavenumbers less than n, ~ 8, we can
make a clean identification of the dominant mechanism
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responsible for the skewness. The same mechanism is
also responsible for most of the negative skewness on
the large scales, although there asymmetry of the flow
itself must be invoked to account for the remaining,
mostly positive skewness. The PDF of geopotential
fluctuations ®’, P(P’), as computed from standard ob-
servational analysis or from general circulation model
(GCM) output, is significantly skewed toward negative
anomalies at midlatitudes in both hemispheres (see Fig.
1, discussed more fully in section 2). The skewness
has a strong zonal structure and where it is large and
negative, P(®’) (zonally averaged) has a pronounced,
approximately exponential tail for negative fluctua-
tions, that is, P(®’) ~ exp(—(const)|®’|). The skew-
ness of ® is not a small effect. For example, in the
summer hemisphere, at midlatitudes, 200-mb height
anomalies of three standard deviations below the mean
are about 10100 times more likely than the same-size
anomaly of the opposite sign!

We will show that the asymmetry of ® fluctuations
can be understood as a simple consequence of the non-
linearities of the balance equation and that this mech-
anism is responsible for much of the negative skewness
on all scales studied. It should be emphasized that the
mechanism consists of symmetric, random velocity
fluctuations being rectified into asymmetric fluctua-
tions of ®. The dominant large negative skewness
bands do not arise from the prevalence of a particular
flow structure such as cutoff lows, although such struc-
tures might well be responsible for the remaining
‘‘unexplained’’ skewness, especially on the large
scales. The phenomenon studied here is similar to that
discussed by Holzer and Siggia (1993, hereafter HS)
for homogenecous, isotropic turbulence. However, at-
mospheric flow, while for our purposes simply two di-
mensional, has the additional complications of being
subject to the Coriolis force and an inhomogeneous
mean background flow, which lead to a more compli-
cated and interesting structure of P(®’).

For idealized Gaussian, homogeneous, isotropic ve-
locity fluctuations on a beta plane, we obtain the gen-
eral functional form of P(®') analytically and derive
criteria for the presence of exponential tails and the
generic dependence of its skewness on a generalized
Rossby number. For the special case of velocity fluc-
tuations concentrated on a narrow band of wavenum-
bers, P(®’) can be obtained in closed form and this
will serve as an instructive example of how the skewing
effect of the nonlinearities is modulated by the linear
geostrophic balance and interactions with the mean
state. In spite of its extreme simplifications, this model

does capture the gross features of the observed P(®') -

when the observed mean state of the atmosphere is used
to provided the background flow for the model fluctu-
ations.

A first-order scale analysis for synoptic-scale motion
determines ® as an instantaneous quadratic functional
of the velocity through the balance equation (see, e.g.,
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Haltiner and Williams 1980), which in pressure coor-
dinates is :

Vo =-V(v-V)vy - V-(f Xv), (1)

where v is the nondivergent (V-v = 0) part of the
horizontal wind velocity, and f = (22 sing )k is the
Coriolis parameter for latitude ¢. Because of the in-
homogeneities of the background flow, it is much easier
to deal with a velocity that has a PDF of zero mean.
We therefore separate v into its mean V (representing
a mean annual cyéle, a time average, or an ensemble
average, as appropriate ), and its fluctuations about that
mean, v’ = v — V. The nonlinear term of the balance
equation (1) then becomes

V'(V'V)V = (ax‘vj)(ajvi)

where we have introduced component notation for clar-
ity [9;, = d/dx;, where (x,, x,) is the horizontal posi-
tion; repeated indices are summed]. In this expression,
terms that do not involve the fluctuating parts of the
velocity contribute to the mean of ® but have otherwise
no effect on its PDF. Equation (2) shows that inho-
mogeneities in the mean state impart contributions to
the nonlinearity V-(v-V)v, which are linear in the
fluctuations and which will be shown to modulate the
effect of the truly nonlinear fluctuations (v'v').

To see the basic mechanism that skews the distri-
bution of ®,,, consider a flow in which the statistics of
v’ are symmetric in the sense that they are invariant
under v’ — —v’, or at least that all its triple correlations,
and in particular the skewness of its one-point PDF,
vanish. Then the PDF of any term linear in v’ must also
be symmetric, so that in the absence of nonlinearities
inv’, ®, would have zero skewness. To illustrate that
the nonlinear term in (2) does turn symmetric velocity
fluctuations into skewed @ fluctuations, consider the
contribution, ®y;, of the nonlinear term to ®, which
may be written as

Vi, = —(9))(Gu]) =382 =52, (3)

where {' = k-V X v’ is the (fluctuating ) vorticity and
s} = (0] + 9v])/2 is the (fluctuating) rate of strain
tensor (s° = 5;5;:). The fluctuations of ®y;, cannot be
symmetric since the right-hand side (rhs) of (3) is in-
variant under v/ — —v’, so that positive and negative
velocities, by assumption occurring with equal proba-
bility, contribute to ®y fluctuations of the same sign.
It is in this sense that a skewed distribution of ®y, arises
from the nonlinear ‘‘rectification’’ of symmetric veloc-
ity fluctuations.

The asymmetry of the PDF of ®y;, can also be argued
from an analogy with electrostatics in which the right-
hand side of (3) is equated to the negative of a charge
density so that @y, is formally equivalent to an elec-
trostatic potential. In three-dimensional turbulent
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FiG. 1. Skewness of the unfiltered (all ) and filtered (n > 8) geopotential fluctuations, at 400 mb,
where the skewness is approximately maximized. The contour interval is 0.3.

flows, vorticity tends to be localized (see, e.g., Siggia
1981), while the strain field is of a more extended na-
ture (see, e.g., Brachet 1991), so that —{?/2 may be
considered a collection of localized charges that locally
sharply deform the ®y, surface, so that ®y has larger
negative than positive deviations from its mean. For a
real turbulent geophysical flow, however, vorticity and
strain structures are modified by strong stratification,
and {? and s? are fluctuating and statistically dependent
so that it is not a priori obvious what sign the skewness
of &y has given a flow with an arbitrary spectrum. It
turns out that for two-dimensional Gaussian, homoge-
neous, isotropic velocities the skewness of ®y is neg-
ative definite for any spectrum (see HS and section 4).
In section 4 we will see that even for such idealized
fluctuations, the skewness of the full ® is not neces-
sarily negative, especially for small Rossby number.
On a more intuitive fluid mechanical level, the asym-
metry of ®y; can be understood, for example, for a
hypothetical strain-free, purely rotational flow. In that
case, {2/2 represents the divergence of the centripital
force that is always pointed toward the rotation center
and hence independent of the sense of rotation, which
is why it can only depend on {*. Hence, such flow is
always associated with a low (i.e., negative) anomaly
independent of the direction of the flow so that sym-
metric vorticity fluctuations imply negatively skewed

®y. fluctuations. This “‘cyclostrophic’” balance is to be
contrasted with geostrophic balance where the direc-
tion of the Coriolis force does depend on the sign of {
and whose divergence is fC (on an f plane). Thus, for
geostrophic balance, symmetric fluctuations of { imply
symmetric fluctuations of ®.

The quadratic dependence of ® on v suggests the
asymptotic (i.e., large-®') form of P(®') by the fol-
lowing ‘‘back of the envelope’’ argument. Dimension-
ally, ® ~ v?, so that if the velocity is Gaussian, that is,
P,(v') ~ exp[—(v'/vy)?], then P(®') ~ |®'|72
X exp(—|®'|/v3). By the same token, if the velocity
itself were exponential, that is, P,(v') ~ exp(—|v'/
vo|), then P(®") would be expected to be streched ex-
ponential, that is, P(®') ~ |®'| "2 exp(—[®"|"*/v,).

The full geopotential is given by the sum of ®y and
terms linear in the velocity fluctuations, which repre-
sent the interactions of the fluctuations with the mean
state, and, of course, (linear) geostrophic balance.
However, the PDF of ®' is not simply the convolution
of P(®/.) and the PDF of the linear terms because
these are, of course, not statistically independent. Nev-
ertheless, when the nonlinear terms are strong (large
Rossby number), we can expect asymmetries in
P(®'), while dominance of the linear terms implies a
near-symmetric P(®’). For the case of Gaussian ve-
locities, the asymptotic form of P(®'), its skewness,
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and their dependence on flow parameters can be quan-
tified by essentially writing ® as a complete square in
the statistically independent degrees of freedom as we
shall demonstrate in section 4.

2. Observations of the skewness and PDF

The observational dataset in our analysis consists of
twice daily, global fields for ® and vorticity, {, in spec-
tral form truncated (triangularly) at wavenumber 32
(T32). The data were derived from the operational
analyses of the National Meteorological Center
(NMC). When the data are needed in real space, they
are transformed to a 96 X 48 Gaussian grid. We ex-
amined winters (DJF) and summers (JJA) for the pe-
riod December 1978 to August 1988; for JJA we also
had available an 8-yr set for 1984—-1991. The more
recent data are less noisy at the upper levels (higher
than ~150 mb) and over Antarctica. Results repre-
sented for JJA are therefore from the 1984-1991 set.
For the quantities considered here, there are no essen-
tial differences between the two sets that exceed our
estimate of the uncertainty in the data (defined below).

We compute the skewness, S, of ® at a given point
in the atmosphere using

(@)

= (D12)372°

Se (4)
where ® = ® — @ represents the fluctuations of
about its mean annual cycle, ®, and the brackets ( )
denote the average over the entire dataset for a given
season, location, and level. For a given season, ® is
estimated at every point in space as a least-squares fit
of a parabola to the mean seasonal data (i.e., to ® av-
eraged over the years but not within a season). An
independent fit for each year turns out to be inadequate
because this systematically removes signal in regions
of low variability such as the Tropics. Figure 1 shows
S at 400 mb (chosen at the level where S is approxi-
mately maximized—see below) for ®, and P, [i.e.,
filtered to contain only planetary wavenumbers greater
than O (unfiltered) and 8]. The skewness pattern ob-
served for the unfiltered data is consistent with the NH
analyses of White (1980) and Nakamura and Wallace
(1991). Note the strong zonal structure in S so that it
makes sense to consider the zonal average [S], shown
in Fig. 2a.

To get a rough estimate of the uncertainty in some
quantity X, we split the time series of the data into two
pieces of equal length. If X, and X, denote the values
of X for each of the pieces, we take | X; — X;|/2 as a
measure of the uncertainty in X. This is what is plotted
in Fig. 2b for the zonally averaged skewness (X
= [S§1). The large uncertainties found for DJF in the
Southern Hemisphere (SH) south of ~60°S are due to
well-known deficiencies in earlier NMC analysis (see,
e.g., Trenberth and Olson 1988). The noisiness of the
earlier data above ~100 mb, especially at higher wave-
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numbers, is apparently also well known but less well
documented.

One can also ask how large | S| must be to exceed
what is expected for the magnitude of the random sam-
pling skewness of a finite sample drawn from a normal
(zero true skewness) distribution. From the purely sta-
tistical considerations of the appendix, skewness may
be considered statistically significant at the 5% level
for our sample size if |Sy| exceeds about 0.3, which
is what we choose as the contour interval for maps of
S. It should be emphasized, however, that this is a con-
servative estimate. Random sampling skewness has
random sign, so that if the skewness were merely a
sampling artifact, one would not expect it to be robust
enough to preserve its spatial structure when only one-
half of the data are used. Furthermore, we will show
below that a GCM produces skewness patterns very
similar to the observations, which would be extremely
unlikely if the skewness shown in Figs. 1 and 2 were
an artifact of finite sample size.

The robustness of our straightforward skewness es-
timates can also be ascertained from the fact that an
alternative measure of skewness, which is not sensitive
to noise in the tails of the distribution, gives qualita-
tively similar results. Hosking (1990) has invented a
conceptually elegant measure of the asymmetry of a
PDF, so-called L-skewness, which is obtained as an
appropriately normalized linear combination of or-
dered triplet statistics. The L-skewness differs numer-
ically from the standard skewness due to the differ-
ences in definition. Nevertheless, for our dataset we
find that the L-skewness is approximately a scaled ver-
sion of the standard skewness and does not appear sig-
nificantly less noisy. We therefore continue our anal-
ysis in terms of the conventional skewness as this is
much easier to handle analytically and numerically.

The distinction of fluctuations about the mean annual
cycle ® from fluctuations about the grand seasonal
mean (®) is only important for the large scales, espe-
cially for NH summer. Figure 2c shows [ Sg] computed
by replacing fluctuations about ® with fluctuations
about (®). Comparison with Fig. 2a (and Fig. 2b)
shows that there are no significant differences except
for the Northern Hemisphere during JJA, where the am-
plitude of the fluctuations of ® are comparable to the
amplitude of the quadratic seasonal trend, which can
therefore enhance the skewness of the fluctuations
about (D).

Figures 1 and 2 show that ® has large negative skew-
ness in the general vicinity of the climatological jets.
For the unfiltered data, the maxima of |[S]] lie at the
latitudes of the extrema of the zonally averaged vortic-
ity equatorward of the jets, but at lower levels (~400
mb versus ~200 mb). This is again consistent with the
observation of White (1980) and Nakamura and Wal-
lace (1991) that the skewness of low-frequency anom-
alies changes sign across the storm tracks. As the large
scales are discarded, the latitudes of the negative skew-
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FIG. 2. (a) Zonal average of the skewness of the unfiltered and filtered fluctuations of geopotential about the mean
parabolic seasonal trend ®. The contour spacing is 0.1. (b) Estimate of the uncertainty in (a). The contour interval is 0.05
and values larger than 0.1 have been shaded. (c) Zonal average of the skewness of the fluctuations of geopotential about

the grand seasonal mean (®). The contour spacing is 0.1.
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ness maxima move poleward and for @, coincide with
those of the maxima of the zonally averaged velocity
variance (~10° poleward from the equatorward ex-
trema of [{]). Note that for n = 4, DJF and JJA display
approximate mirror symmetry in {S], thatis, [ Spr(¢)
~ [S]JJA(—d’)-

For the troposphere, the negative zonally averaged
skewness of ®,, shown in Fig. 2a is larger in the sum-
mer than in the winter hemisphere, except for the un-
filtered NH summer. The contrast between hemispheres
is more pronounced for DJF than for JJA. During JJA,
the negative skewness maxima of both unfiltered and
filtered geopotential could be argued to be of equal
magnitude in both hemispheres to within the estimated
uncertainties (Fig. 2b). In addition to the negative
skewness tending to be largest in the weak-flow hemi-
sphere, the level of maximum | S| lies at ~400 mb for
DIJF, at ~300 mb for NH JJA, and at ~300-400 mb
for SH JJA (depending on how much & has been fil-
tered). This seems counterintuitive since the nonlin-
earities, which we said are responsible, are strongest at
~250 mb and (at least at low wavenumbers) in the
winter hemisphere. However, while nonlinear rectifi-
cation is the dominant effect, the precise magnitude of
S depends on a delicate balance between its numerator
and denominator.

Figure 3 shows the zonally averaged numerator and
denominator of the skewness separately for ®,. Both

numerator and denominator have their tropospheric ex-
trema at ~300-250 mb and in the winter hemisphere
as one expects (although in the troposphere for DJF,
the negative third moment is slightly larger in the sum-
mer hemisphere). The reason for having the largest
negative skewness below the level of the climatological
jets and in the weak-flow summer hemisphere is simply
that there the ratio of numerator to denominator has the
largest magnitude. (Although the ratio of zonally av-
eraged numerator and denominator is not equivalent to
the zonally averaged skewness, it is a good approxi-
mation thereof —see below.) A more negative skew-
ness in the summer hemisphere does mean that a three-
sigma low (say) is more likely than a three-sigma high
by a factor even larger than in the high | S| regions of
the winter hemisphere. Of course, in absolute terms,
three standard deviations below the mean is not nearly
as deep in the summer as in the winter hemisphere. The
delicacy of the balance between numerator and denom-
inator is further emphasized by the fact that, especially
for the unfiltered ®, | S| is maximized not at the lati-
tudes of the individual moments but somewhat more
equatorward. ' '

It is useful to estimate the PDF as such, since just a
few moments carry no information about its asymptotic
form and do not uniquely determine its shape. We do
not have enough data to estimate reliably the PDF at a
point. Encouraged by the strong zonal structure of S,
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FiG. 3. Zonal averages of the numerator (top) and denominator (bottom) of the skewness of ®,. The units
are arbitrary but the same for the numerator and denominator. The contour spacing is one unit.

we estimate, therefore, what is essentially the zonal av-
erage of P(®'): in order to maximize the signal to
noise ratio, we make a histogram of every value of @’
on two adjacent grid latitudes for a given season and
level. The normalized histogram thus approximates a
PDF that is a zonal average of the PDFs for every grid
point (and also meridionally averaged over two adja-
cent grid latitudes). Similarly, we also computed the
corresponding PDFs of the zonal and meridional ve-
locity fluctuations (about their annual cycle, estimated
as for ®), u' and v'. The results are shown in Fig. 4 at
400 mb for the equator and for latitudes chosen to co-
incide approximately with the maxima of —[S].

The variances and skewnesses of the PDFs of Fig. 4
are collected in Table 1. For n > 8 the variances drop
with a doubling of the filter cutoff n, in rough accor-
dance with the expected exponent of the associated
spectra. A power-law spectrum ~n~* implies a drop
of the variance by a factor of 2*~! with a doubling of
n,. For the velocities, the exponents thus implied, for
the three latitude bands shown, are (from N to S) a,
=29+0.1,2.5*+ 0.3, and 3.1 £ 0.3. The correspond-
ing exponents for ® are ay = 4.0 £ 0.1, 3.8 = 0.6, and
4.25 * 0.05. The exponents of the computed global
spectra (not shown) for the velocity and ® are ~2.5

and ~4.5, respectively. The discrepancies between the
exponents from the PDF variance and those of the
global spectra and that ag —~ o, is significantly different
from 2 are likely attributable to wavenumber 8 not quite
lying in the power-law regime of the spectra.

Where the PDFs of @' are significantly skewed, there
is a clear tail visible for negative anomalies that is de-
caying more slowly than a Gaussian. The tails are
nearly exponential where they approximate a straight
line on the semilog plot. For the Southern Hemisphere,
for ®,, ®,, and P4, the tail appears to have a kink at
~ =3 standard deviations, beyond which the PDF de-
cays more rapidly. Although the error bars there, again
estimated by splitting the data into two pieces, are nom-
inally small, values below —3 standard deviations rep-
resent only ~1% of the data. Furthermore, it may be
questionable whether Southern Hemisphere analysis is
reliable enough to capture extreme events with fidelity.

For the velocity PDFs, the most important thing to
appreciate is that they are approximately symmetric
and that where asymmetries occur, they are lessened
by discarding the large scales. Where @ has O(1) neg-
ative skewness, the skewnesses of u and v are at least
an order of magnitude smaller. The u-component is
close to Gaussian, while the PDF of v has more expo-
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FIG. 4. Zonally averaged PDFs for @, u, and v at 400 mb, DJF for
the latitude belts indicated. The PDFs are normalized to unit variance,
shifted horizontally to zero mean, and shifted in the vertical for clar-
ity. The PDFs, in order from top to bottom, are for the unfiltered
field, forn > 4,n > 8, and n > 16. The dashed lines are unit-variance
Gaussians for reference. (The standard deviation of variable x is de-
noted by o,.)

nential tails. This is in itself a very interesting result,
but a physical theory for P, (v).is not yet available. Note
also that even for n > 16 the fluctuations of the velocity
are not yet isotropic everywhere.
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The skewness of the zonally averaged PDF, which
is given by

5i = L@
@ [<®72>]3/2 ’

generally does not coincide with [S]. The skewness S*
and [S] are identical only if P(®') = [P(D")]. How-
ever, Fig. 5 shows that S%and [§ ] are qualitatively very-
similar with significant quantitative differences only at
the lowest levels. °

Finally, it is of interest to compare S¢ from a GCM
simulation with the observations. Here we had avail-
able 300-mb data from a 10-yr run (nine winters) of
the Canadian Climate Centre (CCC) GCM (McFarlane
etal. 1992), with a specified annual cycle of sea surface
temperatures (i.e., no interannual variability in the forc-
ing). The simulated and observed skewnesses are
shown in Fig. 6 for DJF. The gross skewness patterns
match quite well. The level of agreement is remarkable
because at midlatitudes the actual moments, like the
variance, are much too weak in the simulations. [ This
is a deficiency common to GCMs of that generation;
see, e.g., Gates et al. (1990).] Inspection of the zonally
averaged PDFs of the model data (not shown) suggests
that the shape of the simulated PDF of &' is qualita-
tively similar to the one observed, with the GCM fluc-
tuations being to a large degree scaled down versions
of the observed fluctuations.

(%)

3. A diagnostic study of the skewness

We now proceed to dissect the balance equation to
elucidate the mechanism that skews P(®"). Tothisend
we compute the terms on the rhs of the balance equa-
tion (1) using the nondivergent winds, in turn com-
puted from the vorticity data. In this section we again
consider fluctuations about a mean annual cycle that is
approximated by a least-squares parabola as in the pre-
vious section. To demonstrate the validity and accuracy
of the balance equation, we compare in Fig. 7 the vari-
ance and skewness of ®, as explicitly obtained from the
winds via the balance equation, to the observations.

Consider first the fluctuating contributions, ®¢, to &
that are due to the Coriolis force and represent the dom-
inant linear term in the balance equation:

V2= —V-(fx v'). (6)

If the statistics of v’ were invariant under v’ - —v’,
then ®¢, being linear in v’, would have zero skewness.
The skewness of ®° as obtained from the observed
winds is shown in Fig. 8. Clearly, the large-scale winds
cannot be completely symmetric, as ®¢ has substantial
skewness until the low wavenumbers have been dis-
carded. Beyond wavenumber 8, @ has relatively little
skewness, which contrasts sharply with the skewness
of the complete ®, field in Fig. 7, demonstrating that
the nonlinear term of (1 ) is responsible for most of the
skewness.
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We now examine the contributions of various pieces
of V-(v-V)v to the skewness of ®. Since we will be
interested in ®,,, (P filtered by discarding wavenumbers
less than n,), a natural scale separation occurs at wave-
number rny/2. Since the nonlinearity is quadratic, the
interaction of two velocity modes both with wavenum-
bers less than n,/2 cannot contribute to ®,,. However,
the interaction of two modes with n < n,, but the sum
of their wavenumbers exceeding ng, can contribute to
®,,. Not precisely every such interaction will contrib-
ute, but we are not interested in disentangling that level
of detail. Here we simply separate v into a ‘‘large-
scale’” piece v* and a ‘‘small-scale’’ piece v° = v
— v, where v* denotes the velocity triangularly trun-
cated at wavenumber n, = ny/2 (v* includes n,). We
can then explicitly remove viv’ interactions from the
balance equation and ask whether asymmetric large-
scale velocity fluctuations make a contribution beyond
ny via vkv® interactions.

With this simple scale separation we write
(3d:v;)(dyv;) as the sum of five terms as follows:

(9:v)(djv;)

= 9,9, vj%v]*
(term 1)

+ 2vp/*
(term 2)

+ 20/ 5T +v)S)
(term 3)

+ (fvit + i+ Ty 1. (7)
(term 4) (term 5)

By design, we can immediately discard term 4. Al-
though term 5 is nonfluctuating, and hence does not
formally contribute to the fluctuations of ®, it is not
entirely eliminated when removing a least squares par-
abolic seasonal trend from ®. This is because ¥ is itself
estimated as a parabola so thatv;v; is a quartic (in time,
within a season). However, we explicitly checked that
the cubic and quartic terms are negligible as expected
(e.g., they contribute less than 0.1% to the skewness of
®'), and therefore term 5 is safely neglected. The con-
tribution of each of the remaining terms to ®,, is ob-
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F1G. 5. The skewness of the zonally averaged PDFs of ®' as
a function of pressure and latitude. The contour spacing is 0.1.

tained by applying the (negative) inverse Laplacian to
it. We may therefore write the (filtered) fluctuations,
@fo, of the geopotential as determined by the balance
equation as

PE =05+ + D@+ 5P, (8)

with ® ¥ corresponding to (term [) in (7). Thus ® "
is the dominant nonlinear term in the fluctuations, ®

TABLE 1. Variances and skewnesses corresponding to the PDFs of Fig. 4. (Variance units are 10¢ m* s for ® and m? s for u and v).

33.4°-26.0°N 3.71°N-3.71°S 37.1°-44.5°S
Variance Skewness Variance Skewness Variance Skewness
® alln 0.70 = 0.03 —0.58 + 0.02 0.04 = 0.01 -0.10 = 0.09 1.15 = 0.06 —0.60 = 0.01
n>4 0.65 £ 0.03 —0.70 = 0.06 0.06 + 0.01 0.00 = 0.09 1.01 = 0.04 —0.67 = 0.05
n>38 0.30 = 0.02 —-0.71 = 0.03 0.060 = 0.009 0.02 = 0.01 0.462 = 0.004 -0.77 = 0.07
n> 16 0.037 = 0.002 -0.22 = 0.03 0.009 * 0.003 -0.04 + 0.04 0.049 = 0.001 —-0.34 = 0.06
u alln 153 £7 0.008 = 0.007 302 0.32 £ 0.08 130 £ 2 -0.017 = 0.006
n>4 146 £ 6 0.0052 = 0.0006 28+ 3 0.203 * 0.008 126 = 2 —0.01 = 0.02
n>38 88.0 £ 04 0.15 = 0.02 23 = 0.15 = 0.01 913 0.02 = 0.04
n> 16 25 +1 0.06 = 0.02 8.1 0.7 —0.014 * 0.004 22+ 1 0.03 = 0.03
v all n 120 =5 —-0.03 = 0.02 12+1 0.025 * 0.006 1459 = 0.5 0.048 + 0.007
n>4 117 £ 5 —0.03 = 0.03 121 0.000 *+ 0.008 1436 £ 04 0.053 #= 0.004
n>8 66.8 = 0.7 —0.15 = 0.03 11 =1 0.01 = 0.02 94 + 4 0.081 = 0.005
n> 16 17.1 £ 0.9 —0.012 = 0.001 43 +08 0.005 * 0.002 21 £ 1 0.019 = 0.005
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Fi6. 6. Comparison between observations and CCC GCM data for the skewness
of ® at 300 mb, DJF. The contour interval is 0.3.

represents the interaction of the fluctuations with the
mean state, and ® @’ represents the effect of large-scale
fluctuations.

With a scale separation between wavenumbers 4 and
5 (n, = 4), it turns out that the global spectra of &V
and @ ® are of the same order of magnitude, while the
spectrum of ® © is more than an order of magnitude
smaller for n > n, = 8. We can therefore ignore v'*
altogether [we explicitly checked that neglecting &
has no effect on the skewness of ®;3]. The smallness of
® ) is basically due to the fact that the large-scale ve-
locities are primarily stationary. The spectrum of the
fluctuating velocity, E, (n), is more than an order of
magnitude smaller than the total spectrum, E,(n), for
n < 5. Beyond its peak at n ~ 8, E, ~ E,.. [ For typical
spectra of mean and transient velocities, see, e.g., Boer
and Shepherd (1983).] If the scale separation is moved
to higher wavenumber, v'* becomes larger and &
can no longer be neglected. For example, if the scale
separation is at n, = 8, 1, & @ and & ® are all of
the same order.

Because the skewness is a highly nonlinear functional
of ®, the skewness is not usefully decomposed into ad-
ditive contributions by expanding ® as the sum (8) in
expression (4) for S. To demonstrate the effect of ® "
and ¢ * on the skewness of ®Z , we therefore compute
the skewnesses of ®; — ® and ®5 — @ and

compare them with the skewnesses of ®5 and ®;, in
Fig. 9a for ny = 8 (n, = 4) and in Fig. 9b for n, = 0
(no filtering, no scale separation). The figure shows
both seasons at 400 mb where the skewness is approx-
imately maximized and at 200 mb, the approximate level
of the climatological jets, where the velocity variance is
approximately maximized. Figure 9 clearly shows that
® () is responsible for the large negative skewness bands
for both the full and filtered ®.

The effect of ® ® (interaction with the mean state)
is small but clearly observable at 200 mb, where both
the mean gradient and the fluctuations are near their
maxima. For the filtered data (ny, = 8), the asymmetries
in ®° are small and the effect of ®® is particularly
clean: ¢ ® tends to reduce the skewness in the strong-
flow winter hemisphere. In fact, if it were not for ® %,
the skewness would be maximized in the winter hemi-
sphere. This makes some intuitive sense since ® @,
being linear in the fluctuations, adds to the Coriolis
term, making the nonlinearities relatively less impor-
tant. Roughly, ® ® contributes more to the denomi-
nator than to the third moment, although this statement
is generally only true for asymptotically large ® . For
small and O(1) values of the mean vorticity and strain
(nondimensionalized by f), the presence of ® ® can
actually enhance the skewness (see section 4). In the
winter hemisphere, at this level, a stronger @ *’ hap-
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F1G. 7. Comparison of the variance and skewness of ® as obtained from the balance equation with observations.

The contour spacing for the variance is 10° m* s

pens to compensate for a stronger ® (), giving ® a
skewness not much different from that in the summer
hemisphere.

Below the level of the jets, the effect of ® *’ on mod-
ulating the midlatitude skewness is small, but the neg-
ative skewness of ®° is largest there and larger in the
summer than in the winter hemisphere (Figs. 8 and 9).
We therefore attribute the fact that the negative skew-
ness is maximized below the level of the jets and gen-
erally in the summer hemisphere to the presence of
asymmetries in the velocity itself. This assertion has
further support from the analytic considerations of the
next section, where we find that for Gaussian velocities
the extrema of [S] do correspond to the maxima of the
zonally averaged velocity variance.

Finally, it is interesting to look at the skewness of
® @™ in isolation. For idealized Gaussian, homoge-
neous, isotropic velocity fluctuations, ® ¢’ has a skew-
ness that is negative definite and a function of the form
of the spectrum only, independent of the eddy kinetic
energy (see HS and below). Thus, departures of Sz
from a constant value are indications to what degree
the skewness is sensitive to the velocity being non-
Gaussian, inhomogeneous, and anisotropic. Figure 10
shows [Sg] for n, = 4 and 8 for both ® ¢! unfiltered

~#, and for the skewness 0.3.

and filtered by removing wavenumbers n < 2n,. The
unfiltered ® "’ has very large negative skewness with
a dip in the Tropics, where the skewness drops by a
factor of ~2. Nevertheless, the skewness of @V is
much more slowly varying than the skewness of ® and
could be argued to be roughly constant from ~15° to
~80° in both hemispheres. Filtering ® ¢!’ drastically re-~
duces the skewness and imposes additional structure.

4. Analytical arguments and models for the PDF of
]

To gain some insight into how key flow parameters
control the skewness and functional form of P(®'), we
consider here idealized fluctuations that are analytically
tractable on a beta plane. We assume that all mean
quantities, such as kinetic energy, spectra, and mean
velocity gradients are constant throughout the beta
plane with values determined at the origin. [For sim-
plicity, we ignore in this section the presence of a sea-
sonal trend within a season, so that X = (X ), for any
variable X.] Superposed on this (locally) constant
mean background flow, fluctuating velocities are as-
sumed to be homogeneous, isotropic, and Gaussian.
While this is clearly not the case in the atmosphere on
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FIG. 8. The skewness of the Coriolis contribution, ®¢, to ® at 400 mb, DJF. The contour interval is 0.3.

all scales, there is some evidence that homogeneity and
isotropy are reached at sufficiently high wavenumber
(n = 10) (Boer 1994). As was shown in the previous
section, the very large scales can essentially be ignored.
when one is interested in the fluctuations of ®;. The
idea here is to learn what one can by simply assuming
that the flow on all relevant scales is multivariate Gauss-
ian, homogeneous, and isotropic and that interactions
with inhomogeneous, anisotropic, non-Gaussian fluc-
tuations can be ignored. Interactions with the mean
flow are not necessarily negligible, and we will there-
fore keep the 9,7;0;v; term. Inhomogeneities in the fluc-
tuations of ® will be captured by moving the beta plane
from place to place. Figure 4 showed that at least the
one-point PDF of u is close to Gaussian when the large
scales have been discarded, but that the v component,
while symmetric, can deviate from being Gaussian.
Without being very far from observations, we will take
the flow to be precisely multipoint Gaussian as this is
the only case for which formally infinite-dimensional
multivariate statistics are analytically tractable. In the

concluding remarks following this section, we will re- -

visit the assumption of a multivariate Gaussian flow
and discuss its physical limitations. -

With these preliminary considerations we write the
balance equation on the beta plane (f = fo + By) as

qu) = —’(aivj)(ajvi) - 23ﬂ)}ajv,~

— Bu + fot + (nonfluctuating), (9)

where we have dropped the primes on the rhs so that
all unbarred velocities denote the zero-mean fluctua-
tions. With the assumptions made, ® as given by (9)
has manifestly homogeneous statistics.

Expressing the velocity in terms of the streamfunc-
tion, (u, v) = (—0,, d,)¥, and inverting the Laplacian
in (9), we find that the geopotential at the origin [x
= (x, y) = 0] is given by

4 X §

q — q:

(0) = —f (dql)(dqz)Jf(ql)( > " P(qy)

+ [ i@ - - 2@ + iBg1q7), (10)

where (dq) denotes dg.dq,/(27)?, J(q) = [ dxp(x)
X exp(—iq-Xx), and

Z(q) = 2(25u49.9, + 5o(q; — q2)1/q*, (11)

with §; = (9;v; + 9;v;)/2 being the mean strain field.
Here ®(0) is the full ® field at the origin. Filtering ®
analytically would add a great deal of complexity to



‘uonjeredss o[eos AUE 1NOYIM SPIOY PAIANYUN 3y} JO SSIUMSNS (Q) "G PUE § SIoqUInU
@® — g® ‘(PAYSEP-10P) ()& — & (PIUSEP) - ‘A[uO LIS} STOL0D “(SUH PIIOS) 4

spnie| apniie|
. / N, .
RN 7 \
[ \\ N ./:\/MN. i
/
\ / e 1
VIrr qu 00y 4ra qu ooy
spmue| spnyie|
i Lo L I b
- Je- .\ qz-
' N\ \J“.\.MW/
i 1= 7 AR, /.,//
I N
VI qw 002 4rg qu ooc
@

SARM U22M19q uoneredss 9[eds B (I ‘Poureidl are g < U SIAqUINUSABA £TuQ (®) “(paysep-10p-adin)
G “SuLId) [[¢ JO wns :uonenbs dour[eq SY) UL SUKS) SNOLIEA JO SSAUMNS paseraae K[RU0Z ‘6 “OLI

apniie| apniie|
J
) ] “
/ A
N\ .
4rg quw ooy
apniie|

VT qu 00¢

()]

4ra qu 00¢



1374

the subsequent analysis and unnecessarily obscure
what simple results can be obtained.

It is convenient to work not directly with P(®) but
with its generating function P(z) = [ d®P(®)
X exp(iz®), which is given by

P(z) = (emr @), (12)

where the brackets ( ) denote an average over an en-
semble of all possible fields ¢, and the notation
®(0, [¢]) emphasizes the functional dependence of $
on . From the generating function, moments of the
distribution are easily evaluated via

ﬁ(z))

n

<‘1>”>=(—i)"(aa,, (13)
z z=0

Note that P(®) is normalized when P (z = 0) = 1 and
that the asymptotic properties of P(P) are determined
by the analytic structure of P(z) in the complex z-
plane.

Because v is homogeneous and isotropic,

(@(P)d(@)) = (2m)%(p + @)o*(9),

where o(q) is related to the kinetic energy spectrum,
E(q), normalized so that [ dkE(k) = {|v|?)/2, via
c%(q) = 4wE(q)/q>. Because we assumed that the
fluctuations are Gaussian, all the Fourier modes are in-
dependent via (14), except where related through ¥(q)
= *(—q) by virtue of reality. Thus, the ensemble av-
erage of (12) becomes

~ / ~ ~* ~
P(z)=5\ff(Hd([/(q)>exp{__f(dq)¢ (q)w(q)}

(14)

20(q)?
x expliz®(0. [v1)) = & [ (D)

X eXP{*f (dp)(dq)x(q)B(q, p)x*(p)

— iz f (dp)F(p)x(p)} , (15)

where the product (i.e., the functional integral) is over
only one-half of the q because ¥(q) = y*(—q), Xis

a normalizing constant, x(q) = (Z(q)/(\/ia(q)) is the
scaled streamfunction,

B(z;p,q) = (2m)*%(p — q) + izM(p, q),

and

(16)

F(q) = 2a()lfs — T— Z(q) + iBgq,/q*1, (17)
with

P Xq
P—q

2
M(p, q) = 20(1))( ) o(qg).  (18)
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FiG. 10. Skewness of the nonlinear term @ in isolation. The solid
line is for scale separation at wavenumber n; = ny/2 = 4, the dashed
line for scale separation at n, = ny/2 = 8. The gray lines correspond
to the skewness of ® filtered by discarding wavenumbers n < ny,
while the black lines are the corresponding skewnesses of the unfil-
tered field. .

We may think of B and M as matrices B, M, with
continuous indices p and g (or discrete indices for a
finite-dimensional discretized version of the equa-
tions). Similarly, we may think of F(p) as a vector F.
To keep notation maximally simple, we adopt this ma-
trix notation with the inner product defined as the in-
tegral over repeated continuous indices with, for ex-
ample, measure | (dp) for index p, in direct analogy
with the discrete case. Thus, for example, the trace of
M2, denoted by Tr(M?), stands for | (dp)(dq)M(p,
q)M(q, p), and det(M) stands for the determinant of
M, which is equivalent to exp{Tr[log(M)]}. The
transpose of F* is denoted by F'. Since the exponent
in (15) is a quadratic functional, P(z) is readily eval-
uated via standard methods as

2
P(z) = exp[—zzF*-B"(z)-F], (19)

1
vDet(B(z))
where B~'(p, q) is defined through [ (dq’)B~'(p,
q")B(q’, q) = (2m)%(p — q), thatis, B™*-B = 1.

Equation (19) shows that the generating function has
singularities where det(B(z)) = 0. The terms in the
exponent do not introduce any further singularities
since B™'(z) is singular only where det(B(z)) = 0.
The zeros of det(B) occur for purely imaginary z by
virtue of M being real and symmetric (HS). The zero
closest to the real axis occurs at z = i/\, where \ is the
largest (in absolute value) eigenvalue of M. It follows
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from standard theorems on Fourier transforms that for
large |®| the PDF, P(®), has an exponential tail of
the form P(®) ~ exp(—|®/\|). The magnitude of the
largest eigenvalue, \, is bounded by its estimate of
2{}v(0)|?) (the matrix M differs by a factor of 2 from
that defined in HS). For small values of @, the singu-
larities of P(z) can be ignored, so that we may take B
~ B! ~ 1. The resulting integral is trivial and shows
that for small ®, P(®) is approximately Gaussian, that
is, P(®) ~ exp(—®*/F-F). The crossover from this
central Gaussian core to the ultimate exponential tails
thus occurs at ® ~ &, = FT-F/{|v(0)|*).

Whether or not one actually can see the exponential
tail of P(®) depends on how many standard deviations
®, represents. The variance of ® can be computed from
(19) and (13) as

(@'2) = %(Tr(MZ) + FT-F), (20)

where &' = ® ~ (®). The first term in (20) can be
bounded by its estimate of 4(|v(0)|?)? so that

22 1

<I>e/0q,~T Tk (21)
where
2(1v(0)|*) '
R=—r—+2—, 22
FF (22)

and o4 = V(®'?). The bounds of the integrals in (20)
are simply accomplished by realizing that M(p, q)
< 20(p)o(q)pq, which allows factorization of the in-
tegrals. For the special case of no mean vorticity or
strain, F(q) = V20(q)(fy + iBg,/q?), so that F'-F
=4 [ dqE(q)(f} + B%q>1q*)/q*. Thus, if we define
length scales, L, L,, and a velocity scale, V, through
VILA(f3 + B7L3) = [ daE(q)(f} + Ba3/q")/q*
and V? = (|v(0)|?), R is recognized as the Rossby
number, V/(f,L), appropriate for scale L when § = 0,
and as a generalized nonsingular Rossby number,
VI(LJf § + B*L2), for nonzero § (and similarly for
nonzero 6;U;). When the balance is dominated by the
linear terms (small kinetic energy, large F), R is small
and the tail occurs for an unobservably large number
(< 1/R) of standard deviations.

Explicit expressions for higher moments of ® can be
computed again via (19) and (13) or directly by taking
moments of (10). Since ¢ is assumed to be Gaussian,
averages of an odd number of s vanish and averages
of 2n products of ¢ decompose into products of n av-
erages of the form (i) as given by (14), paired in all
possible ways. Either way, one obtains for the third and
fourth moments
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(®'3) = ~Tr(M®) — F'-M"F, (23)
2

and

(®'*) = 3 Tr(M*) + 6F'-M?-F
+ % [Tr(M?) + FT-F2.  (24)

From (20) and (23), the skewness is given by S
= (®'3)/(D'?)3?. To determine the generic depen-
dence of the skewness on the generalized Rossby
number (22), we again estimate the integrals of (23)
by their bounds. The term F'-M-F is not positive
definite for arbitrary £(q) [defined in (11)], so that
we will only estimate its magnitude. Again bound-
ing M(p, Q) < 20(p)o(q)pq, we have Tr(#’)
~ 8(]v(0)]?)?, and replacing F by |F|, |F'-M-F|
< 2(J@p)|F(p)lo(p)p)> < 2F-F(|v(0)|?),
where the last inequality follows as a Cauchy-
Schwartz inequality. Thus, we obtain

(const.) + R?

S ~ _Z&R (1 +R2)3/2 ?

(25)

where (const.) is O(1) with a sign that depends on the
details of £(q). For small R, § « =R, while for large
R, S approaches a negative constant.

Equations (23) and (20) cannot be evaluated in
closed form for a power-law spectrum, so that it is il-
luminating to consider a é-function spectrum posi-
tioned at wavenumber n;. We will refer to this model
as the ‘‘shell model’’ since the streamfunction lives on
a (circular) shell in spectral space. For this special case
even the generating function itself can be obtained in
closed form. Although this can in principle be accom-
plished by direct substitution into (19), it is much sim-
pler to start with the expression (10) for ®(0), restrict
the wavevectors to lie on a circle, and then diagonalize
by expanding the Fourier modes of (q) in circular
harmonics. The Gaussian integrals over the amplitudes
of those harmonics can then easily be performed. (For
details on the technique, see the appendix of HS.) One
obtains for the generating function P(Z) of the PDF,
PQ2/(IvI*),

1 Z2

= expl — —=—
(1 +iZ)W1 + 2iZ p[ 47* Ro?
_ A2 A2

« (2(1 9) P

1+2iZ 1+iZ
where Ro = V([v[?)/(fL) is the (standard) Rossby
number, L = 2mal/ns, { = {/fo, ?,-j = §;/fo, and B
= Bal(nsfy) = (cotd)/ns, with a being the earth’s ra-
dius. From this generating function, we obtain the
skewness

P(z)

+4(5% + 5%, )] (26)
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FI1G. 11. (a) Comparison of the skewness of the shell model (n;
= 4) with the skewness of ®; from the observations at 200 mb, JJA.
The contour spacing is 0.05 for the shell model and 0.3 for the ob-
servations. .

5, = —{f3n Ro—12(L= £)? + 362 + 2072 Ro?
201 =) +4G% +53)
+ A% + 672 Ro?)*"2
(27)

Note that S; has the general dependence on Ro given
by (25) but is negative definite. Equation (27) can also
be expressed in terms of the generalized Rossby num-
ber (22), which is given by R = 47 Ro(2(1 — {)?
+ 4(52% + §%) + %) 72, In the limit of infinite Ro
(with everything else constant), S; — —10/ (3V3)
~ —1.92 ..., which compares well with the unfiltered
curves of Fig. 10, which show [Ssm] ~ —1.6 = 0.3
over a relatively wide range of latitudes.

It is interesting to evaluate S; at every point in the
atmosphere with the local values of Ro, f;, 8, €, and
5;. The shell model has one major adjustable parame-
ter, the radius of the shell, ns. The spectrum of the
nonlinear contribution to ® is easily shown to be « n[ 1
— (n/(2n5))?]? for n < 2ns, and for n > 2n, the spec-
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trum must of course vanish. Thus, to compare Ss with
the observed skewness of ®g, one should take n; ~ 4—
8. We find that with ns = 4, we actually get some qual-
itative agreement with the observations (Fig. 11), al-
though with such small n; the original picture of a beta
plane throughout which the mean state is constant is
somewhat stretched. The magnitude of |Ss| is too
small, but the pattern of its geographic variation is re-
markably similar to the observations, considering the
crudeness of the shell model.

Figure 12a shows [S;]. Unlike in the observations
(Fig. 2a), |[S5]] is largest where the zonally averaged
velocity variance is strongest. In Fig. 12b the effect of
the interaction with the mean state is illustrated by re-
moving this term [setting { = 5= 0 in (27)]. In the
atmosphere §,, is small compared to 5, ~ {/2, (3w
< 0d,u), so that we can simply concentrate on the effect
of the mean vorticity. The larger T, the larger the net
linear contribution to @, and hence one would expect
the presence of a large { on either side of the jet to
reduce | S| and thus narrow the latitudinal extend of
significant S, as indeed seen in Fig. 12a. However, | S5
is not a monotonically decreasing function of ¢ for
fixed Ro and /. For midlatitude values of Ro and B,
| S5| can in fact increase with an increase in {, for small

(@) all terms

pressure [mb]

pressure [mb]

latitude

FiG. 12. (a) Zonal average of the skewness, Ss, of the shell model
(n; = 4) for JJA. (b) As in (a) but with { = 0 and § = 0, which

corresponds to the skewness of ® — ®@. The contour interval is 0.05,
with light shading for —0.35 < §; < —0.25 and dark shading for Ss
= —0.35.
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| CA | and a ~ 1! This is responsible for the higher max-

imum when { is included (Fig. 12a). This example
stresses that the dependence of the skewness on flow
parameters can be quite subtle and that it is generally
only asymptotically true that increasing the amplitude
of the linear terms will decrease the skewness by in-
creasing the denominator faster than the third moment.

5. Concluding remarks

The main point of this paper is to demonstrate that
the dominant mechanism responsible for the large neg-
ative skewness of ® is the rectification of near-sym-
metric velocity fluctuations by the advective nonlin-
earity. We have shown that this mechanism accounts
for most of the observed negative skewness by com-
puting the linear and nonlinear terms of the balance
equation separately from the observed nondivergent
winds. Because the linear terms have much less skew-
ness when spatially filtered, the effect of the nonlinear
term on P; is particularly clean. For @, interactions
with asymmetric fluctuations with wavenumbers n
< 5 could be neglected. Interactions with the mean
flow have an observable effect on the skewness in the
vicinity of the climatological jets, where both fluctua-
tions and mean gradients are largest. At 200 mb the
interactions with the mean flow are responsible for sup-
pressing a winter hemisphere negative skewness max-
imum for ®3, although their effect is not large enough
to explain the observed summer hemisphere negative
skewness maximum at other levels and for the unfil-
tered data.

To obtain analytical results for P(®) and its skew-
ness, we consider multivariate Gaussian, homoge-
neous, isotropic fluctuations on a beta plane. For such
fluctuations, we show that P(®) has asymptotically ex-
ponential tails. The number of standard deviations that
fluctuations must exceed to fall in the exponential re-
gime scales with the strength of the nonlinear terms as
measured by the generalized Rossby number, R, like
1/R [cf.(21) and (22)]. Consistent with these conclu-
sions, in Fig. 4, approximate exponential tails are vis-
ible at midlatitudes, while in the Tropics P(®) is close
to Gaussian. Confining Fourier modes to a shell in
wavenumber allows closed-form expressions for the
PDF and skewness, which show that the dependencies
on the flow parameters can be quite subtle: increasing
linear terms can actually increase the skewness. While
the shell model does capture the gross geographic dis-
tribution of the skewness, maxima of the zonally av-
eraged negative skewness coincide approximately with
the maxima of the zonally averaged (transient) eddy
kinetic energy, with the largest skewness occurring in
the winter hemisphere. Although a Gaussian model
with a full kinetic energy spectrum whose form is al-
lowed to change from place to place-could in principle
produce a skewness pattern that is maximized ~150
mb below the velocity variance maxima and in the sum-
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mer hemisphere, it is hard to imagine small inhomo-
geneities in the form of the spectrum to have a signif-
icant effect on the skewness pattern since inhomoge-
neities in the eddy kinetic energy are already taken into
account in the shell model.

The most important shortcoming of a Gaussian
model for the velocity is that it ignores asymmetries in
the flow itself that are not negligible in the atmosphere,
as could be seen from the skewness of the dominant
linear contribution, ®°, to ® (Fig. 8). These asymme-
tries affect the statistics of both the linear and nonlinear
terms of the balance equation. Since the negative skew-
ness of ®¢ is largest below the velocity maxima and in
the summer hemisphere (Figs. 8 and 9), we attribute
the fact that negative skewness maxima lie below the
zonally averaged jets and are generally larger in the
summer hemisphere to non-Gaussian behavior of the
velocity field.

The asymmetries of the velocity have of course
physical content. The nonvanishing of triple correla-
tions, (v} (XI)U;(Xz)UIQ(Xs» (for positions x,, X;, X3),
simply expresses the fact that in turbulent flow there
must be nonlinear transfer of kinetic energy and en-
strophy across scales and, for an inhomogeneous sys-
tem, net transport across space. Such correlations have
been studied for homogeneous, isotropic turbulence
and in the atmosphere for globally averaged energy and
estrophy budgets, but little seems to be known about
their spatial structure in the atmosphere. Of course,
even for three-dimensional isotropic turbulence, where
the triple correlations are known exactly through the
von Karman—Howarth relation (von Kiarman and Ho-
warth 1938; see also Landau and Lifshitz 1987, pp.
135-142.), it has not yet been possible to incorporate
these correlations into an analytically tractable multi-
variate probability ensemble.

The nonvanishing of the triple correlations already
contributes to the skewness of ®°. Consider for sim-
plicity the beta-plane case of (9), for which we have

(29(0)%) = f3(y(0)*) + f (dq,)(dq)(dqs)

X g(fo, B Q1) 92, Q3)<JJ(Q1)J’(Q2)J’(‘]3)>, (28)

where g (f = 0) = 0. Even if the one-point PDF of
the streamfunction, ¢, had zero skewness (which it
does not since in midlatitudes ¢y ~ ®/f), the nonvan-
ishing triple correlations would impart finite skewness
to ®¢. [If one assumes power-law scaling, §y(q) ~ g >
and the integral is dominated by the largest scales kept,
where asymmetries appear to be largest.] Similarly,
nonvanishing higher-order odd correlations of v’, as
well as the fact that higher-order even moments in gen-
eral cannot be factorized into covariances, will contrib-
ute corrections to the statistics of the nonlinear terms
as derived from a Gaussian model.
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Fig. 13. The threshold for significant skewness at the 5% level,
Sos(Nops, @), determined numerically from a first-order Markov process
of Ny = 1800 iterations, plotted (data points) versus lag-one correlation
coefficient, a. The solid line is an empirical fit to the data (see text), and

the dashed line shows the estimate 2v6/(Ny,(1 — a)) for Sys.
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APPENDIX
Threshold for Statistically Significant Skewness

The skewness computed from (4) for N samples
drawn from a symmetric distribution will have a non-
zero random sample skewness. The magnitude of this
random sample skewness has a probability density
function Py(| S|, N) [with Py(] S|, ) = 6(|S§|)], and
here we ask the question how large the magnitude of a
skewness computed from N, observations must be so
as to be unlikely to come from that distribution. We
will consider a skewness to be significantly different at
the 5% level from what it would be for a normal dis-
tribution, if its magnitude exceeds the 95th percentile,
Sos, of Py(] S1). In other words, S¢s may be taken to be
the threshold that | S| computed from real data must
exceed to be considered ‘‘statistically significant at the

5% level.”’

5% significance threshold

DJF 400 mb alln

JJA 400 mb alln

FiG. 14. Maps of the threshold for significant skewness magnitude at the 5% level for the unfiltered and filtered (» > 8) geopotential as
determined from the lag-one correlation coefficient, &, and the fit t0 Sos(Vegs, @) shown in Fig. 13. The contour interval is 0.05.



15 May 1996

If the samples are statistically independent and N is
large, the answer is quoted in White (1980) and Nak-
amura and Wallace (1991):

Ses = 2V6/N. (A1)

The difficulty here lies in determining the number of
independent samples N given a time series of N, ob-
servations taken every At = 12 h, which has serial
correlations. For simplicity we will assume here that
the consecutive ten winters (Ny,s = 1800) form a (tem-
porally ) homogeneous time series. (This will lead to a
slight underestimate of the number of independent sam-
ples from what it would be if we treated the ten winters
as independent.) A simple estimate of N can be ob-
tained from the lag-one correlation coefficient, «
= (&' (HP'(r — ADY(®'*(t)), of the data as N
= Nus(1l — ). This is essentially what was done by
Nakamura and Wallace (1991). For our data, the larg-
est correlation coefficients are about o ~ 0.8 to 0.9, so
that this simple estimate gives Sos ~ 0.26 to 0.37.

A more consistent, direct estimate that does not re-
quire us to guess the number of independent samples
can be obtained if we make the assumption that the data
has the same statistics as a Gaussian first-order Markov
process with a specified lag-one correlation coefficient
a. We thus assess statistical significance by comparing
the data to the synthetic time series generated by

D' (1) = ad' (t — At) + n(2), (A2)

where the n(¢) are statistically independent, identically
distributed, zero-mean Gaussian random numbers. For
this Markov process, the threshold Sgs(N, @) is then
easily determined numerically by generating a large
number, M, independent length N, = 1800 synthetic
time series, and computing their skewnesses. The
threshold Sos is then approximated by the average of
the (0.95M)th and the (0.95M + 1)th element of the
ordered sequence of the skewness magnitudes (see,
e.g., Hogg and Tanis 1983).

Figure 13 shows Sos thus obtained (with M = 4000)
as_a function of « together with the estimate
2V6/(Ngs (1 — a)) . We get an excellent fit to the nu-
merical data for Sys by fitting log(Sss) to a power series
in £ = log(1 — «). The fit shown in Fig. 13 is a sixth-
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order polynomial in £ that converges rapidly after order
£*. This fit was used to transfer maps of a to maps of
Sos shown in Fig. 14 for 400 mb DJF and JJA, both for
the unfiltered and filtered (n > 8) data. In the vicinity
of the zonal bands of negative skewness (Fig. 1), typ-
ically Sgs ~ 0.25. Only for the unfiltered data does S5
exceed 0.35, and this occurs in the polar regions well
away from the large negative skewness bands of Fig. 1.
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